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Abstract—Feature selection is an important step in gene ex-
pression data analysis. However, many feature selection methods
exist and a costly experimentation is usually needed to determine
the most suitable one for a given problem. This paper presents the
application of gradient boosting and neural network techniques
for the construction of metamodels that can recommend rankings
of {feature selection - classification} algorithm pairs for new gene
expression classification problems. Results in a corpus of 60 pub-
lic data sets show the superiority of these techniques in producing
more useful rankings in relation to classical metamodels.
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I. INTRODUCTION

The current gene expression profiling technologies have
generated great hopes for the construction of early diagnosis
and prognosis systems for cancer and other diseases. However,
building such systems with clinically acceptable accuracies
is challenging. Among the major difficulties is the high
dimensionality of the feature space (genes) relative to the
number of samples, which poses statistical issues in model
estimation [1]. The usual approach to alleviate this problem
is by applying feature selection techniques. Yet many feature
selection methods exist and none is clearly superior in the
domain of gene expression data [1]. So the common practice
is to experiment with a set of selection methods in combination
with classification models to determine the most suitable for
a given problem (gene expression dataset), implying high
experimentation times and computational resources. Meta-
learning (MtL) has been proposed as a way to circumvent
this costly practice [2]. It aims to construct predictive models
(metamodels) that relate characteristics of datasets (metafea-
tures) to performance of algorithms so they can be used to
recommend algorithms for new unseen problems. Nonetheless,
MtL has been little exploited in the domain of gene expression
data. Representative works are [3] for clustering algorithm rec-
ommendation and [4], [5] for classification algorithm recom-
mendation. Classical machine learning models have been used
as metamodels, including KNN, SVM and Ranking Trees,
which have shown some potential of MtL in this domain.
However, more sophisticated and robust models exist, such as
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gradient boosting machines (GBM) [6] and neural networks,
which could make MtL approaches more attractive in this
field. Thus, in this paper we adapt and evaluate two state-of-
the-art ML models for ranking recommendation of {feature
selection - classification} algorithm pairs for gene expression
classification problems: a GBM with the LambdaRank ranking
cost function [7] and a neural network model.

II. METHODS

This work follows the general MtL scheme in [8] (Fig.
1). The input consists in a repository of datasets from dif-
ferent problems. The data characterization module extracts
metafeatures that describe each dataset. The evaluation module
assess the performance scores of each considered algorithm
in each dataset. These scores are then converted to rankings
that, together with the metafeatures, form the metadata for the
metamodel induction. A ML algorithm can then be used to
induce the metamodel with the metafeatures as input variables
and the ranking as target variables. This metamodel can be
used in testing time to predict a ranking of algorithms for a
new problem, based on the metafeatures of the input dataset.
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Fig. 1. Metalearning for algorithm recommendation (adapted from [8])

Data characterization

In this work we focus on the metamodel induction module
aiming to feature selection algorithm recommendation. The
first evaluated method is the LightGBM (LGBM) algorithm



[6], an ensemble of gradient boosting decision trees with the
LambdaRank pairwise loss function. It has shown successful
results in real world ranking problems [7], because it allows
to optimize the Normalized Discounted Cumulative Gain
(NDCG) metric by adjusting the learning rate based on the
NDCG changes obtained by swapping two data points. In
this case, the optimization metric used for early stopping and
parameter tuning was NDCG@n, where n is the number of all
the feature selection methods available to recommend. In other
words, the NDCG was calculated over the whole ranking list.
LightGBM works over discrete features, continuous features
are transformed into discrete ones by histogram binning. In
order to find the best configuration of parameters of the
estimators and the training procedure, hyperparameter tuning
is performed with Bayesian optimization [9].

As an alternative method to build ranking metamodels we
propose a neural network architecture inspired on a matrix
factorization approach. The architecture is illustrated in Fig.
2, where the feature selection method is transformed to a dense
representation via a embedding layer, while the metafeatures,
already in a continuous representation are transformed to the
same latent space via a dense layer with a nonlinear activation.
Once in the latent space, both representations are combined
with a dot product to ensure that they share the same latent
space. The output of the network consists in a continuous value
that represents the relative rank of the algorithm, normalized
between 0 and 1 via a sigmoid function, which is optimized
through a MSE loss function.
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Fig. 2. Neural network architecture. Both the continuous metafeatures and
the feature selection method indices are transformed to the same latent space
via dense and embedding layers and then merged through a dot product

As a baseline we also evaluate the classic K-Nearest Neigh-
bors (KNN) algorithm as a ranking recommendation method
[4]. This method constructs the ranking recommendation by
averaging the rankings of the k nearest datasets to the test
dataset according to a distance measure. The average ranking
of all the training rankings is also evaluated as a baseline.

III. EXPERIMENTS AND RESULTS

For the experiments of this work we used a collection of 60
public gene expression datasets derived from different cancer-

2727

0.6

R

+

Mean Spearman Correlation
o
°

-0.4

Random
Ranking

Average LGBM Neural Net

Optimized
Ranking LGBM

KNN KNN
(Euclidean)  (Manhattan)

Fig. 3. Spearman correlation results of different metamodel induction
methods. The white labels display the mean value
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Fig. 4. Paired statistical test results on the mean Spearman scores of the
different metamodels. Blue boxes indicate pairs of metamodels with not
statistically significant difference (significance level of 0.05).

related studies. These datasets can be found in our repos-
itory!. Each dataset was evaluated with every combination
of 4 feature selection algorithms (ReliefF, Fisher-score, Chi2
and Random Forest) and 3 classification methods (Support
Vector Machines, Naive Bayes and Logistic Regression). The
evaluation was performed in a 5-fold cross-validation strategy,
repeated 30 times with different foldings. The average Gmean
(geometric mean of class-specific accuracies) was used as a
score of each combination, which was used to construct the
target ranking. As metafeatures we used 12 common statistics
and based on information theory measures [8] which we ex-
panded to 39 using the framework for systematic development
of metafeatures proposed by [10].

To evaluate the quality of the recommended rankings we use
two measures: the Spearman correlation index [8] and the per-
formance loss curve (PLC) metric [11]. The Spearman index
assesses the overall proximity of the estimated ranking w.r.t.
the ideal ranking. The PLC metric evaluates how useful the
ranking is (in terms of accuracy) if one evaluate the algorithms
in the ranking order. To compute PLC, each algorithm of the
ranking is sequentially tested and the difference in accuracy
between the best algorithm so far and the truly best algorithm
is stored. Then, a loss curve is generated with that differences
and the area under that curve is the PLC metric. The score of

Uhttps://github.com/How124/fs-ranking-prediction



each metamodel induction method was obtained by averaging
the PLC results of 10-fold, 10-times cross-validation over the
metadata.
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Fig. 5. PLC results of different metamodel induction methods. The white
labels display the mean value
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Fig. 6. Paired statistical test results on the mean PLC scores of the different
metamodels. Blue boxes indicate pairs of metamodels with not statistically
significant difference (significance level of 0.05)

Fig. 3 shows the average Spearman scores of the metamod-
els induced with each evaluated method. We can observe that
Neural Networks metamodels present the best mean scores,
followed by KNN and LGBM metamodels. The worst per-
forming method was random ranking, as expected. To assess
the statistical significance of these results we applied a paired
T-test and a Wilcoxon test to test the mean differences between
all pairs of metamodel Spearman correlation and PLC scores
respectively (with a significance level of 0.05). Fig 4. shows
the results of these tests. It can be noted that neural networks
metamodels are statistically different from the other models,
which confirms their great learning capacity to suggest overall
rankings.

Fig. 5 shows the average PLC scores of the metamodels
induced with each evaluated method, and Fig 6. shows the
corresponding results of the statistical significance tests among
all pairs of metamodel scores, as explained above. These
results indicate that any MtL approach is statistically better
(in terms of PLC values) than choosing random rankings or
the average ranking of the training datasets. Among the learned
metamodels, we can observe that KNN produce rankings with
statistically worse PLC scores than LGBM or Neural Network
metamodels, as we hypothesized, since these last are more
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elaborated. LGBM and Neural Network metamodels tend to
offer similar scores and variances and do not show significant
statistical differences. However, the LGBM optimized version
improves slightly the average PLC results.

It is important to say that PLC metric is a more useful
measure for the intended task than Spearman index, since it
give us an idea of how much we can gain or lose in accuracy
if we follow the recommended ranking to build the classifiers.
The Spearman index evaluates the overall proximity of the
inferred ranking to the ideal one, giving the same weight to
errors in the higher or lower part of the ranking and without
worrying about predictive accuracy of the base-level models.

IV. CONCLUSION

This paper adapted and evaluated two state-of-the-art meth-
ods to predict rankings of combinations of feature selection
- classification algorithms for gene expression classification
problems. Results on a collection of 60 public gene expression
datasets showed a significant gain in prediction accuracy and
stability in relation to the standard KNN method, as measured
by the PLC metric. Further improvements were obtained when
an optimization effort was made in these models. This proves
that, by taking advantage of current developments in the
machine learning field, we can improve our ability to deal
with these challenging data and to facilitate the construction
of early diagnosis and prognosis systems for cancer without
incurring in high computational burden.
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